Structure Functions and Nuclear PDFs in eA Collisions

Thomas Ullrich (BNL/Yale), EIC User Group Meeting, UCB, 8/1/2016

PDF: Connecting Experiment with Theory

Issues:

- σ_o: Experimental precision, statistics, sys. uncertainties
- $\sigma_{a\to b}$: scale uncertainties (especially for $p_T < 10$ GeV)
- D_{b→o}: "black box" similar to PDFs (input from e⁺e⁻)

PDF: Connecting Experiment with Theory

Better:

PDF (pp): Impact of Precision DIS (HERA)

Note: Little Impact from Hera F_L measurements

Nuclear PDFs (nPDFs)

Goal: Describe initial state of nuclei

Issues:

Same as in pp

Plus

- Final state effects
- low-x: gluon saturation requires BK/JIMWLK instead of DGLA/BFKL to derive PDFs

Note: Not really an issue but rather a blessing since it will give us insight into the realm where gluon saturation effects emerge

nPDFs: Where Do We Stand?

	HKN07	EPS09	DSSZ	NCTEQ	
Order in α_s	LO & NLO	LO & NLO	NLO	NLO	
Neutral current DIS $\ell+A/\ell+d$	✓	✓	✓	√	
Drell-Yan dilepton p+A/p+d	✓	✓	✓	✓	
RHIC pions d+Au/p+p		✓	✓		
Neutrino-nucleus DIS			✓		
Q^2 cut in DIS	$1\mathrm{GeV}$	$1.3\mathrm{GeV}$	$1\mathrm{GeV}$	$2\mathrm{GeV}$	
datapoints	1241	929	1579	708	
free parameters	12	15	25	17	
error analysis	✓	✓	✓	√	
error tolerance $\Delta \chi^2$	13.7	50	30	35	
Free proton baseline PDFs	MRST98	CTEQ6.1	MSTW2008	CTEQ6M-like	
Heavy quark treatment	ZM-VFNS	ZM-VFNS	GM-VFNS	GM-VFNS	

Large Differences among nPDF fits, especially for gluons 6

nPDFs: What Causes the Trouble?

Experiment	Process	Nuclei	Data points	χ^2 LO	χ^2 NLO	Weight	Ref.
SLAC E-139	DIS	He(4)/D	21	6.5	7.3	1	[20]
NMC 95, re.	DIS	He/D	16	14.5	15.6	5	[21]
NMC 95	DIS	Li(6)/D	15	23.6	16.8	1	[22]
NMC 95, Q^2 dep.	DIS	Li(6)/D	153	162.2	157.0	1	[22]
11.110 00, q, dop.	210	21(0)/2	100	102.2	100	-	[]
SLAC E-139	DIS	Be(9)/D	20	9.6	12.2	1	[20]
NMC 96	DIS	Be(9)/C	15	3.8	3.8	1	[23]
11110 50	DIS	DC(3)/ C	10	0.0	9.0	1	[20]
SLAC E-139	DIS	C(12)/D	7	4.1	3.2	1	[20]
NMC 95	DIS	C/D	15	15.0	13.8	1	[22]
NMC 95, Q^2 dep.	DIS	C/D	165	141.8	142.0	1	[22]
NMC 95, re.	DIS	C/D	16	19.3	20.5	1	[21]
NMC 95, re.	DIS	C/Li	20	30.3	28.4	1	[21]
FNAL-E772	DY	C/D	9	7.5	8.3	1	[24]
SLAC E-139	DIS	Al(27)/D	20	10.9	12.5	1	[20]
NMC 96	DIS	Al/C	15	6.0	5.8	1	[23]
SLAC E-139	DIS	Ca(40)/D	7	5.0	4.1	1	[20]
FNAL-E772	DY	Ca/D	9	2.9	3.4	15	[24]
NMC 95, re.	DIS	Ca/D	15	25.4	24.7	1	[21]
NMC 95, re.	DIS	Ca/Li	20	23.9	19.6	1	[21]
NMC 96	DIS	Ca/C	15	6.0	6.0	1	[23]
11110 30	DIS	Ca/C	10	0.0	0.0	1	[20]
SLAC E-139	DIS	Fe(56)/D	26	19.1	23.9	1	[20]
FNAL-E772	DIS	Fe/D	9	2.1	2.2	15	[24]
	DIS	Fe/C					
NMC 96		/	15	11.0	10.8	1	[23]
FNAL-E866	DY	Fe/Be	28	20.9	21.7	1	[25]
ODDN DAG	DIG	G (01) /D	1.0	10.4	140		[0.0]
CERN EMC	DIS	Cu(64)/D	19	13.4	14.8	1	[26]
~			_				
SLAC E-139	DIS	Ag(108)/D	7	3.8	2.9	1	[20]
NMC 96	DIS	Sn(117)/C	15	9.6	9.1	1	[23]
NMC 96, Q^2 dep.	DIS	Sn/C	144	80.2	82.8	10	[27]
						(x=0.0125 only)	
FNAL-E772	DY	W(184)/D	9	7.0	6.7	10	[24]
FNAL-E866	DY	W/Be	28	27.3	24.2	1	[25]
		,					
SLAC E-139	DIS	Au(197)/D	21	11.6	13.8	T	[20]
RHIC-PHENIX	π^0 prod.	dAu/pp	20	7.3	6.3	20	[28]
101110 1 1111111111	prod.	ara/pp	20	1.0	0.0		[=0]
NMC 96	DIS	Pb/C	15	6.90	7.2	I	[23]
111110 00	1010	10,0	10	0.30	1.4	1	[20]
Total			929	738.6	731.3		
10041			949	100.0	191.9		

Data Sets (here EPS09)

- Dominated by DIS and DY
- Exception are π⁰
 - ightharpoonup Sensitive to $g(x,Q^2)$
 - DSSZ w=1 and EPS09 w=20

Prediction for direct photon R_{pA} based on DSSZ and EPS09

nPDF: Do Final State Effects Play a Role?

- nPDF and vacuum FF can not describe data
- Hinting we are looking at final state effects

Recall EIC's capability to measure R_{eA} as fact of Q², z, v,

nPDF Constraints From LHC?

- So far effect of LHC data is rather mild
- Dijets are the most constraining but focus on large Q² a rather "uninteresting" region
 - ▶ The (preliminary) data is completely consistent with EPS09 – would improve the large-x gluons
- EW bosons promising to relax condition R_u=R_d

H. Paukkunen DIS 2014

EIC: Structure Functions and nPDFs

Inclusive Cross-Section:

$$\frac{d^2\sigma^{eA\to eX}}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[\left(1-y+\frac{y^2}{2}\right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$
 quark+anti-quark

Reduced Cross-Section:

$$\sigma_r = \left(\frac{d^2\sigma}{dxdQ^2}\right) \frac{xQ^4}{2\pi\alpha^2 [1 + (1-y)^2]} = F_2(x, Q^2) - \frac{y^2}{1 + (1-y)^2} F_L(x, Q^2)$$

$$\sigma_r(x, Q^2) = F_2^A(x, Q^2) - \frac{y^2}{Y^+} F_L^A(x, Q^2)$$

F_L Strategy (Rosenbluth Separation):

Recall $Q^2 = x y s$

 $F_L = \text{Slope of } y^2/Y_+ \text{ for different s at fixed x, } Q^2$

EIC Impact Study (e+A)

F_2

- Use Pythia6 + EPS09 to generate data
- Acceptance cuts, smearing
- Generate sufficient statistics (10⁷ events) to minimize statistical fluctuations, scale errors to 10 fb⁻¹
- Statistical uncertainty is negligible
- Assume a realistic 3% systematic uncertainty (~HERA)
- Use HERMES method to calculate F₂ from σ_r

F_L

- 5 and 20x50 GeV: A ∫Ldt = 2 fb⁻¹
- 5 and 20x75 GeV: A ∫Ldt = 4 fb⁻¹
- 5 and 20x100 GeV: A ∫Ldt = 4 fb⁻¹

- The pseudo-data is scaled to the EPS09 calculation
- Errors on pseudo-data and EPS09 are scaled for visibility
- At higher x, uncertainties on EPS09 and pseudodata are negligible
- At smaller x, pseudodata uncertainties are much smaller than EPS09
- Good lever arm at x~10⁻³
- Systematic uncertainties dominate, not \(\mathcal{L} \) hungry

- The pseudo-data is scaled to the EPS09 calculation
- Errors on pseudo-data and EPS09 are scaled for visibility
- At higher x, uncertainties on EPS09 and pseudodata are negligible
- At smaller x, pseudodata uncertainties are much smaller than EPS09
- Good lever arm at x~10⁻³
- Systematic uncertainties dominate, not \(\mathcal{L} \) hungry

- The pseudo-data is scaled to the EPS09 calculation
- Errors on pseudo-data and EPS09 are scaled for visibility
- At higher x, uncertainties on EPS09 and pseudodata are negligible
- At smaller x, pseudodata uncertainties are much smaller than EPS09
- Good lever arm at x~10⁻³
- Systematic uncertainties dominate, not \(\mathcal{L} \) hungry

- The pseudo-data is scaled to the EPS09 calculation
- Errors on pseudo-data and EPS09 are scaled for visibility
- At higher x, uncertainties on EPS09 and pseudodata are negligible
- At smaller x, pseudodata uncertainties are much smaller than EPS09
- Good lever arm at x~10⁻³
- Systematic uncertainties dominate, not \(\mathcal{L} \) hungry

- The pseudo-data is scaled to the EPS09 calculation
- Errors on pseudo-data and EPS09 are scaled for visibility
- At higher x, uncertainties on EPS09 and pseudodata are negligible
- At smaller x, pseudodata uncertainties are much smaller than EPS09
- Good lever arm at x~10⁻³
- Systematic uncertainties dominate, not \(\mathcal{L} \) hungry

- The measurement of F_L is more complex and more limited
 - Much larger uncertainties and much smaller acceptance than F₂ measurement
 - Require data from at least 3 different energies in each x,Q² bin
 - Used Rosenbluth Separation technique to extract F_L
 - Systematic uncertainty (3%) is dominating

F_L in e+A: LHeC vs. EIC

Plot taken from LHeC CDR, courtesy of N. Armesto

- Good complementarity with F_L measurement at LHeC
- Both measurements are limited by their uncertainties and σ_r appears to be the more obvious way to constrain the nuclear PDFs

EIC - F2^{c,A} Structure Function

F_{2,c} driven by photon-gluon fusion (PGF)

F₂^c probes PDFs at somewhat higher value of Bjorken x

$$x_{\text{probe}} = x \left(1 + \frac{4m_c^2}{Q^2} \right)$$

- As F_L is a difficult measurement, F_{2c} may be the way forward
- Larger uncertainties than F₂ but smaller than F_L
- Statistics are not an issue but requires Si detectors
- At low x, uncertainties are smaller than EPS09

Can F₂c,A Signal Gluon Saturation?

 Can potentially provide access to differences between models

Example:

Ratio of rcBK to EPS09 shows the possible discriminatory power of this measurement

 F₂c,A suffers from limited xrange, high √s required

- Ratio of PDF(Pb)/PDF(p)
 - Without EIC, large uncertainties for sea quarks and gluons
 - Adding in EIC, pseudo-data significantly reduces the uncertainties, particularly at small-x (global fit by H.Paukkunen)
 - Fitting the charm pseudo-data has a dramatic effect at high-x
 - Shed light on A dependence (here Carbon)

- Ratio of PDF(Pb)/PDF(p)
 - Without EIC, large uncertainties for sea quarks and gluons
 - Adding in EIC, pseudo-data significantly reduces the uncertainties, particularly at small-x (global fit by H.Paukkunen)
 - Fitting the charm pseudo-data has a dramatic effect at high-x
 - Shed light on A dependence (here Carbon)

- Ratio of PDF(Pb)/PDF(p)
 - Without EIC, large uncertainties for sea quarks and gluons
 - Adding in EIC, pseudo-data significantly reduces the uncertainties, particularly at small-x (global fit by H.Paukkunen)
 - Fitting the charm pseudo-data has a dramatic effect at high-x
 - Shed light on A dependence (here Carbon)

- Ratio of PDF(Pb)/PDF(p)
 - Without EIC, large uncertainties for sea quarks and gluons
 - Adding in EIC, pseudo-data significantly reduces the uncertainties, particularly at small-x (global fit by H.Paukkunen)
 - Fitting the charm pseudo-data has a dramatic effect at high-x
 - Shed light on A dependence (here Carbon)

Elephant in the Glass House

Radiative "Correction"

- Emission of real photons experimentally often not distinguished from nonradiative processes: soft photons, collinear photons
- Studies underway (ignored in EIC WP)

Feynman diagrams for leptonic radiation at $O(\alpha)$ (NC)

for eq scattering:

$$F_n^{ ext{obs}}(x, Q^2) = \int \mathrm{d} ilde{x} \mathrm{d} ilde{Q}^2 R_n(x, Q^2; ilde{x}, ilde{Q}^2) F_n^{ ext{true}}(ilde{x}, ilde{Q}^2)$$

- Expect strong dependence on experimental prescriptions for measuring kinematic variables
 - ▶ leptonic variables: measure E and θ of scattered lepton \Rightarrow x and Q²
 - ▶ hadronic variables: measure E, θ from hadronic final state $\Rightarrow \tilde{x}$ and \tilde{Q}^2
 - mixed variables: combine information from leptonic and hadronic final state
- Need MC to unfold, kinematic cuts can limit effect
- Detect radiated photon?

Elephant in the Glass House

Radiative "Correction"

- Emission of real photons experimentally often not distinguished from nonradiative processes: soft photons, collinear photons
- Studies underway (ignored in EIC WP)

Feynman diagrams for leptonic radiation at $O(\alpha)$ (NC)

for eq scattering:

$$F_n^{ ext{obs}}(x, Q^2) = \int \mathrm{d}\tilde{x} \mathrm{d}\tilde{Q}^2 R_n(x, Q^2; \tilde{x}, \tilde{Q}^2) F_n^{ ext{true}}(\tilde{x}, \tilde{Q}^2)$$

$$Rcorr = \frac{\sigma_{red}(O(\alpha))}{\sigma_{red}(born)} - 1$$

Radiative corrections - 20 GeV x 100 GeV

Take Away Message

- Constraints on nPDF without an eA collider are weak and uncertain
- Complete and detailed studies of an EICs capability to measure F^A₂, F^A_L, F^A_{2,c} are done
- Missing piece is the study of radiative corrections (in progress)
- In eA, structure functions are sensitive to gluon saturation
- Measurement of the reduced cross-section at an EIC does substantially constraint the gluon and sea nPDFs
- FA_{2,c} does constrain nPDFs at larger x (EMC effect range)
- Quality of structure function measurements is dominated by systematic uncertainties and less affected my statistics

Supporting Material

Effect of EIC on EPS09

Effect of EIC on EPS09

FL - Rosenbluth Separation

$$\sigma_r(x, Q^2) = F_2^A(x, Q^2) - \frac{y^2}{Y^+} F_L^A(x, Q^2)$$

